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Lagrangian statistics in forced two-dimensional turbulence
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We report on simulations of two-dimensional turbulence in the inverse energy cascade regime. Focusing on
the statistics of Lagrangian tracer particles, scaling behavior of the probability density functions of velocity
fluctuations is investigated. The results are compared to the three-dimensional case. In particular an analysis in
terms of compensated cumulants reveals the transition from a strong non-Gaussian behavior with large tails to
Gaussianity. The reported computation of correlation functions for the acceleration components sheds light on

the underlying dynamics of the tracer particles.
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INTRODUCTION

In recent years, the Lagrangian description of turbulent
flows has attracted much interest from the experimental point
of view [1,2] as well as in numerical [3,4] and analytical
investigations [5]. This is not only due to the relevance of the
Lagrangian approach for applications such as turbulent mix-
ing and the dispersion of pollutants. But fundamental turbu-
lence research also benefits from this alternative description
and its relation to the Eulerian formulation. The classical
Kolmogorov theory (K41) predicts self-similar scaling of the
probability density functions (PDFs) of the velocity incre-
ments in homogeneous isotropic turbulent flows. It is a well
known fact that in three dimensions the assumption of self-
similarity is violated for Eulerian velocity increments. This is
referred to as Eulerian intermittency [6]. We know from re-
cent experiments [1,2] and numerical simulations [3,4] that
intermittency is observed in the Lagrangian picture as well.
For two-dimensional turbulence the situation is different: al-
though numerical investigations show deviations from Gaus-
sianity [7] for the Eulerian velocity increments, the inverse
cascade provides an Eulerian flow field with scaling proper-
ties compatible with the K41 predictions. For this reason, the
inverse energy cascade in two-dimensional turbulence seems
to be the ideal system to shed light on the Lagrangian statis-
tics and its relation to the Eulerian case.

This paper presents results from numerical investigations
of the Lagrangian dynamics of forced two-dimensional tur-
bulence. Thereby we focus on intermittency. The remainder
of this article is structured as follows. After briefly discuss-
ing the system under consideration and summarizing some
facts regarding the numerics, we present results on the Eule-
rian increment statistics. The main part of the article is de-
voted to the study of the Lagrangian increment PDFs. Finally
we discuss properties of the acceleration correlation.

BASIC EQUATION

The behavior of two-dimensional fluid motion is gov-
erned by the vortex transport equation

dw=—u-Vo+ vAw - yo - Af, (1)

with the vorticity w=w(x,7) and the velocity u=u(x,t). The
velocity components Uy, = &qub and Uy, =0y, ¢ are connected
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to the vorticity field w via the stream function ¢ by A¢=
—w. We investigate two different types of forcing f. One with
a rapidly decaying spatial correlation function (f(x+r)f(x))
~exp(—r2/213) [7], where I, is the length scale of the corre-
lation. The second is confined to a small shell of wave num-
bers in Fourier space [8] leading to a long spatial correlation.
Both forcings are & correlated in time and have the property
to inject energy at small scales into the system. The forcings
are added in Fourier space with constant amplitudes and ran-
dom phases. In the first case we chose /.=0.05 and in the
second case the energy is injected at k=210 into the system.
The damping term —yw in Eq. (1) extracts energy at large
scales from the system and avoids the generation of a large
scale flow.

NUMERICAL METHOD

The integration of Eq. (1) was performed by a fully
dealiased pseudospectral method on a doubly periodic square
domain with side length 27 and 1024 grid points. For nu-
merical reasons, the viscous term is replaced by a hypervis-
cous term of order 8. The time evolution for the field and the
tracer particles was achieved by a fourth order Runge-Kutta
scheme. After reaching stationarity we introduced 10° par-
ticles with random but equally distributed initial positions
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FIG. 1. (Color online) Energy spectra E(k) of simulations using
the forcing with the short (upper curve) and the long (lower curve)
correlation length. The line denotes the Kolmogorov prediction
E(k)~ k™78,
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FIG. 2. (Color online) Rescaled PDFs of the Eulerian velocity
increments for the distances r=0.08,0.1,0.2,0.6. For comparison a
Gaussian pdf is shown. Small deviations from Gaussianity exist and
can be quantified by the moments [7].

into the flow and monitored their trajectories for about 200
Lagrangian integral times 7. The velocity and the accelera-
tion of the tracers were determined by a bicubic interpolation
scheme. Except for Figs. 1 and 7 all presented results are
obtained using the forcing with the rapidly decaying spatial
correlation.

EULERIAN STATISTICS

In order to check the parameters for the numerical inte-
gration, we first analyze the Eulerian velocity field. Figure 1
shows the energy spectrum for both kinds of forcing together
with a line showing the K41-scaling k=3, For a stationary
velocity field, the longitudinal Eulerian velocity increments
are defined as dv, (x,r)=dv,(x,r)-F with v, (x,r)=u(x+r)
—u(x) and F=r/r. If we additionally assume isotropy and
homogeneity of the flow, we can write dv,(x,r)=0dv,(r). The
PDFs p[év,(r)] are scaled to unit standard deviation by
opldv,(r)/ o] with o=(dv,(r))""*. Figure 2 shows the res-
caled PDFs for different . The shape does not vary with r
and hence the PDFs are self-similar. This is in agreement
with experimental [9] and numerical [7] studies and leads to
the conclusion that intermittency is absent in the inverse en-
ergy cascade as far as the Eulerian increments are concerned.

LAGRANGIAN VELOCITY STATISTICS

In the Lagrangian frame of reference the velocities are
recorded along the trajectories of tracer particles v(y,?)
=[u(x,)]xx(y,)» Where y is the starting position of the tracer
and X(y,?) is its current position. Velocity fluctuations are
characterized by the PDFs of the Lagrangian velocity incre-
ments 6v;(7)=v,(r+7)—v,(r), where v; is the projection of the
velocity on one of the coordinate axes with i=x;,x,. Due to
isotropy the statistics does not depend on the chosen axis.
Therefore in the following the Lagrangian velocity increment
will be denoted as Sv(7). The moments of p[dv(7)] are
known as the structure functions S,(7)=(dv(7)"). Figure 3
shows PDFs of the Lagrangian velocity increments for sev-
eral time lags 7. For time lags of the order of 7, the PDFs
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FIG. 3. (Color online) Rescaled PDFs of Lagrangian velocity
increments for the time lags 7=0.045,0.09,0.22, 1.797; (from outer
to inner curves). The most inner curve is a Gaussian pdf. The PDFs
are vertically shifted.

are close to a Gaussian distribution whereas for small 7 the
PDFs show large tails. A rescaling of the distribution func-
tions resulting in a collapse to a universal distribution is not
possible. Accordingly, classical Kolmogorov scaling cannot
be observed in the Lagrangian frame in contrast to the Eule-
rian case. Deviations from the Gaussian shape can be quan-
tified by the compensated cumulants \,=c,/o”". The c, are

the cumulants connected to the characteristic function C (k)
of a PDF P(x) by

©

Clk = exp| T ik’ @
and o is the variance (corresponding to c,).

For a Gaussian distribution all A, with an order n higher
than 2 vanish. The compensated cumulants can easily be
computed from the structure functions S,. For symmetric
PDFs, \y=84/ S%—S is the excess kurtosis and the sixth order
normalized cumulant reads \g=(Sg—155,45,)/53+30. In Fig.
4 we see a log-log plot of A, and \¢. The crucial point is that
for a self-similar signal the kurtosis should be a constant at
least in the region where self-similarity of the PDFs is ex-

/Ty

FIG. 4. (Color online) Compensated cumulants of order four
(lower curve) and six (upper curve) for 2D turbulence. As a guide
for the eye 713 and 772 are shown.
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FIG. 5. (Color online) Compensated cumulants of order four
(lower curve) and six (upper curve) for 3D turbulence together with
7715 and 772°. The time is given in multiples of the Kolmogorov
time 7,
pected. In our simulations the kurtosis depends strongly on 7
and for intermediate times follows a power law as can be
seen in Fig. 4. This also holds for A¢ which, however, decays
faster than A4. As a reference we plotted two lines following
the power laws 77> and 72, During the decay of the cu-
mulants the PDFs converge to the Gaussian shape. In order
to investigate the universality of the observed behavior we
used the data provided by Refs. [3,10] to calculate the same
quantities for three-dimensional turbulence (see Fig. 5).
Again scaling behavior can be detected for intermediate
times and for comparison we added power laws with the
same exponents as in Fig. 4. For very small and very large 7
the shapes of the compensated cumulants show differences
between 2D and 3D. We devote this to the fact that in 2D the
energy is injected on the small scales and mainly dissipated
at the large scales whereas in 3D the situation is complemen-
tary. Again our results give strong evidence for intermittency
in two-dimensional Lagrangian turbulence.

SCALING OF THE LAGRANGIAN STRUCTURE
FUNCTIONS

Additionally to the cumulants, the structure functions are
computed to characterize the PDFs. As no scaling region is
visible for the structure functions we have to rely on the
extended self-similarity (ESS) technique [11] in order to es-
timate scaling exponents. To apply ESS we have to use the
structure functions for the absolute values of the velocity
increments S:(T):<|5v(7')|”>. Standard arguments of dimen-
sional analysis lead to the scaling behavior S* ~ 7% with gy
=p/2. The ESS plot is shown in Fig. 6. Estimating the ex-
ponents up to order five in the spirit of Ref. [4] leads to the
values g”; shown in Table I. We also performed the analysis
for larger values of Sj (corresponding to larger 7) [3] result-
ing in the exponents {Z. In both cases the exponents deviate
strongly from the K41 predictions which is in agreement
with the observation that the excess kurtosis is not constant.

DEPENDENCE ON THE FORCING

To study the effect of the different forcings on Lagrangian
observables, we also performed simulations with a forcing
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FIG. 6. (Color online) ESS plot of S;k (lower curve) and S:
(upper curve). The lines show the ESS scaling laws with exponents
g; (lines ranging from S;=0.04 to S:=0.4) and gj‘, (from S;k
=0.015to S;k =0.9) obtained by the two fitting procedures (see text).
The dashed lines correspond to the K41 scaling.

limited to a small number of Fourier modes. In this case, the
results for the PDFs (Fig. 7) as well as for the cumulants are
qualitatively and quantitatively similar to the situation with
short spatial correlation. This leads to the conclusion that the
observed deviation of the Lagrangian PDFs from the K41
prediction is very robust and seems to be independent of the
type of forcing.

ACCELERATION CORRELATIONS

The path of a Lagrangian tracer particle starting at the
position y is uniquely defined by the acceleration acting on
the particle. The acceleration is given by the right-hand side
of the Navier-Stokes equation

a(y,n) =[-Vp(x,t) + vAu(x,1) = yu(x,0) + V X f(x,1) |—x(y.»
3)

where the pressure p(x,7) is related to the vorticity by Ap
=V-[uX w]—%Au? In addition to this fact, the acceleration
is also of central interest for turbulence modeling [12,13].
Particularly in two dimensions, it is convenient to split up
a(x,t) into a component parallel and a component perpen-
dicular to the current velocity of the tracer. The latter is
sensitive to circular motions. The two components are de-
fined as ay=a-u/|u| and a, =a-(-u,,u,)/|u|. As pointed out
in Ref. [14], long correlation times of the velocity increments
and the acceleration play a key role for the occurrence of
Lagrangian intermittency. This poses the question of whether
the observed deviation from self-similarity of the increment
PDFs in 2D is also connected to long correlation times of the

TABLE 1. ESS scaling exponents for 2D turbulence.

p 1 3 4 5
£ 05570002 1.267+0.007 1.35£0.018 1.313+0.033
& 05570003 1313+0.008 1.45£0.019 1.588=0.029
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FIG. 7. (Color online) Rescaled PDFs of Lagrangian velocity
increments for the same time lags as in Fig. 2. In this case the
forcing was confined to a small number of Fourier modes.

acceleration. In Fig. 8 we can see the correlation functions
C,(7) with h=a |, a;, v for the two components of the accel-
eration and for the velocity defined as C,(7)=(h(t)h(z
+7))/(h*(1)). The correlation for the parallel component de-
cays very fast and approaches zero after passing a minimum
at negative values. The perpendicular acceleration compo-
nent also decorrelates very fast for small 7. For 7 bigger than
the time corresponding to the minimum of CaH(T) it bends off
into a region where it decays much slower leading to a very
long correlation time. The same behavior is also observed for
3D turbulence [1,15,16]. In Ref. [15] it was related to the
spiraling motion in a vortex filament. Here we also observe
events where the particle runs through loops. Because the
motion is confined to a plane, there is no movement in the
third spatial dimension that could contribute to the decorre-
lation of a | . For comparison also C, is shown in Fig. 8. The
inset in the same figure demonstrates that C“u follows a
power law in the range between its minimum and 7;. The
results for the temporal correlations of the acceleration sug-
gest that the stochastic process for the velocity increments is
essentially non-Markovian, as has been emphasized in Ref.

[17].
CONCLUSION

We presented a detailed investigation regarding the statis-
tics of tracer particles in the inverse energy cascade regime
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FIG. 8. (Color online) Correlation functions CaL(T) (upper
curve), CaH(T) (lower curve), and C,(7) (middle curve). The inset

presents a log-log plot of —Ca”( 7). The line corresponds to 7.

of two-dimensional turbulence. For different types of forc-
ing, we detect the same deviations from self-similarity for
the Lagrangian velocity increment PDFs. This is strong evi-
dence in favor of Lagrangian intermittency in the inverse
energy cascade. It is of particular interest as for the Eulerian
frame no intermittency can be detected. Any attempt to relate
the two frames of reference has to incorporate this fact. The
observation that in 2D and 3D the compensated cumulants
show the same scaling behavior for intermediate time lags
suggest that the underlying dynamical process exhibits a cer-
tain degree of universality independent of the dimension.
This view is supported by the fact that the acceleration com-
ponents show long time correlations which are similar to the
3D case. The explanation for the scaling of the compensated
cumulants remains an open question.
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